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We study the heat conduction of two nonlinear lattices joined by a weak harmonic link. When the system
reaches a steady state, the heat conduction of the system is decided by the tunneling heat flow through the weak
link. We present an analytical analysis by the combination of the self-consistent phonon theory and the heat
tunneling transport formalism, and then the tunneling heat flow can be obtained. Moreover, the nonequilibrium
molecular dynamics simulations are performed and the simulations results are consistent with the analytical
predictions.
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The study of electric currents has led to the invention of
electric rectifiers, diodes, and transistors. An interesting
problem is the following: Can we design a thermal diode as
we do for electric conductivity? A thermal diode refers that
its heat fluxes will be different, as it is inversed between two
heat baths. The absolute values of two different total heat
fluxes are marked as �J±���J+�� �J−��; the gain of a thermal
diode is defined as r= �J+� / �J−�. Very recently, Terraneo, Pey-
rard, and Casati �1� pointed out the possibility of the design
of a thermal diode by coupling three nonlinear chains, where
a strongly Morse on-site potential lattice is sandwiched be-
tween two weakly Morse on-site potential lattices. Li, Wang,
and Casati �2� addressed a higher-gain model that consists of
two coupling Frenkel-Kontorova �FK� lattices connected by
a harmonic spring. Hu and Yang �3� try to use two FK lat-
tices of different periodic on-site potential to design a more
effective thermal diode. Other possibilities �4,5� to design a
thermal diode are discussed too.

When the temperature of a nonlinear lattice changes, the
effective phonon band of the lattice can shift due to the non-
linear effect. For the models of the thermal diode �1–3�, the
phonon bands of different segments change from the overlap
status to the separation status, as right and left heat baths
exchange their temperature. The nonequilibrium molecular
dynamics �NEMD� simulations show that the models work
well on some parameters. However, there are puzzles in the
NEMD simulations results �2,3,5�. For example, why will
the gain of the thermal diodes r decrease by the system size
N? Why is �J±� in direct proportion to k3

2 as k3→0? Why does
�J±� of the models coupled by two FK lattices increase by the
system size N, while each FK lattice obeys the Fourier law
and its total heat flux is independent of the system size N?
Particularly, the exact method to estimate the behaviors of
the models is still absent. So, we present an analytical
method to quantitatively characterize the thermal diode
based on the shift of the effective phonon band. Furthermore,
we compare the analytical results to the NEMD simulations
results.

In this paper, we consider a model of the thermal diode
that consists of two different Morse on-site potential lattices
coupled by a weak harmonic spring. Two heat baths respec-
tively connect to two ends of the model. The two lattices will
achieve two nearly equilibrium states of different tempera-
tures, since the strength of the harmonic spring is weak. Then
the self-consistent phonon �SCP� theory can take into con-
sideration the nonlinearity of the lattices. The SCP theory has
been applied to deal with the nonlinear Morse on-site poten-
tial for the DNA denaturation problem �6�. Thus we can use
the general thermal tunneling transport formalism �7� to cal-
culate the heat flux through the weak harmonic spring. When
the system approaches the steady state, the heat flux in every
site should be identical and the total heat flux can be ob-
tained.

The Hamiltonian is

H = HL +
k3

2
�q1 − q0�2 + HR,
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FIG. 1. Plot of J versus the dimensionless temperature differ-
ence � at T0=13.33. k3=0.05. Here J is obtained on the thermody-
namical limit and k3→0.
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HL = �
i=−N/2+1

0 � pi
2

2mi
+

k1

2
�qi+1 − qi�2 + D1�e−�1qi − 1�2� ,

HR = �
i=1

N/2 � pi
2

2mi
+

k2

2
�qi+1 − qi�2 + D2�e−�2qi − 1�2� , �1�

where N is the total number of the particles, mi=1 the mass
of particles, pi the momentum of the ith particle, and qi its
displacement from the equilibrium position. k1, k2, and k3 are
the strength of the interparticle harmonic potential, k1=k2
=1. For the left segment D1=30, and �1=0.316; for the right
segment D2=20 and �2=0.316. When the heat bath T+ con-
nects with the ith �i=−N /2+1� particle, T− connects with the
ith �i=N /2� particle, the heat flux j+ goes through the sys-
tem, and J+= j+N is the total heat flux. When the heat bath T−
connects with the ith �i=−N /2+1� particle, T+ connects with
the ith �i=N /2� particle, the heat flux j− goes through the
system, and J−= j−N is the total heat flux.

HL and HR can be approximated �6� by the SCP theory as

HL� = �
i=−N/2+1

0 � pi
2

2
+

k1

2
�qi+1 − qi�2 +

f1

2
qi

2� ,

HR� = �
i=1

N/2 � pi
2

2
+

k2

2
�qi+1 − qi�2 +

f2

2
qi

2� , �2�

where the effective harmonic potential coefficient f l�T� �l
=1,2� is obtained from the self-consistent equation
ln�2�l

2Dl / f l�= ��l
2kBT /N��p	1/ �f l+4kl sin2�p� /N��
.

The general heat flux formula across the weak harmonic
spring is

J = �
k�0

Ekvk�k + �
q�0

Eqvq�q, �3�

where Ek and Eq are the energy in the kth and qth mode,
respectively, vk and vq the phonon group velocities on the
left and right segments, and �k and �q the transmission co-

efficients. Here the reasonable mode-energy distributions of
the classical system take E=kBT. The effective phonon group
velocities can be obtained from the effective Hamiltonian
�2�. For the transmission coefficients, we assume a wave in-
cident from the left, which is reflected by the interface with
amplitude r and transmits across the interface with amplitude
t on the right:

qi = eIkia1 + re−Ikia1, i � 0,

qi = teIq�i−1�a2, i 	 1, �4�

where I is the imaginary number unit. Through a tedious but
straightforward algebraic manipulation, one obtains the
transmission coefficient

� = 2 sin�ka1�sin�qa2�k3
2��2�cos�ka1�cos�qa2� − cos�ka1�

− cos�qa2� + 1��k1k2 − �k1 + k2�k3� + 1 +
k1

k2
+

k2

k1

+ cos�ka1 − qa2� −
k1 + k2

k2
cos�ka1� −

k1 + k2

k1
cos�qa2�� .

�5�

Thus the heat flux across the weak harmonic spring is ob-
tained.

As k3→0, the transmission coefficient is

��
� �
k3

2

k1k2

�f1 + 4k1 − 
2��f2 + 4k2 − 
2�

�
2 − k1��
2 − k2�
, �6�

where 
2= f1+4k1 sin2�ka1 /2�= f2+4k2 sin2�ga2 /2�. In the
thermodynamical limit, we can use the integral by 
 substi-
tuting the sum by q in formula �3�,

J = kB�T+ − T−��

min


max

��
�d
 . �7�

Bringing the formula �6� into the formula �7�, we obtain

FIG. 2. �Color online� Plot of temperature profiles Ti; the inset
shows the heat flux. Here, N=64, T+=26, and T−=3.

FIG. 3. �Color online� Plot of J versus the dimensionless tem-
perature difference � at T0=13.33. Here k3=0.05 and N=64.
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j+ =
kB�T+ − T−�k3

2

k1k2

��
�f1�T+� + 4k1 − 
2��f2�T−� + 4k2 − 
2�
�
2 − f1�T+���
2 − f2�T−��

d
 ,

j− = −
kB�T+ − T−�k3

2

k1k2

��
�f1�T−� + 4k1 − 
2��f2�T+� + 4k2 − 
2�
�
2 − f1�T−���
2 − f2�T+��

d
 ,

�8�

where f l satisfied ln�2�l
2Dl / f l�=�l

2kBT /
f l
2+4klf l �l=1,2�.

Then one can obtain the relation of the strength of the weak
harmonic spring and the heat flux, J±�k3

2. In Fig. 1, the
relation between the total heat flux J �J+ and J−� and � is
shown, where � is defined as T±=T0�1±��. J increases as �
for ��0 and J is nearly zero for ��0. As ��−0.9, J is
exactly equal to zero and the gain r→�. The results are
qualitatively the same as the NEMD simulations results of a
similar model in Refs. �2,5�.

The NEMD simulations are performed on the model. The
heat baths are implemented as Nose-Hoover �8� baths in the
simulations. The particles from i=−N /2+2 to i=N /2−1 fol-
low the Hamiltonian equations of motion, while q̈−N/2+1=
−
±q̇−N/2+1−�H /�q−N/2+1, q̈N/2=−
�q̇N/2−�H /�qN/2, and 
±
= q̇−N/2+1

2 /T±−1, 
�= q̇N/2
2 /T�−1. The heat flux j takes the

general expression of the heat flux �9�. Richardson’s method
is used on the integration �10�. The total integration time is
typically �108–109 units.

Figure 2 shows typical temperature profiles of the system
and the inset shows the heat flux profiles at the same param-
eters, in this case �J+�� �J−� and r�6. The left and right
segments achieve nearly two equilibrium states on two heat
baths’ temperature, respectively. For the NEMD simulations
results in Fig. 3, Fig. 4, and Fig. 6, the temperature profiles
are checked to ensure nearly equilibrium states.

The relation of J and � is shown in Fig. 3; the line indi-

cates only the line of sight. Here the solid circles show J by
the analytical estimations with formula �3� at finite size N
=64. The solid squares show J by the NEMD simulations.
The two curves exhibit similar behaviors; the difference be-
tween two sets of data is generally less than 10%. They both
show a clear rectifying effect. We also investigate the rela-
tion of �J±� and k3 in Fig. 4. The NEMD simulations are
consistent with the analytical estimations, and they both
show the relation �J±��k3

2 as k3�0.1; the dotted lines show
the functions �J±��k3

2. The results show well the consistency
of the NEMD simulations and the analytical estimations.

For the nonlinear on-site potential lattice, its thermal con-
ductivity obeys Fourier’s law and its total heat flux is inde-
pendent of the system size. However, the simulation results
show that the total heat flux of the two segment diode models
�2,3� increase by the system size N, where each segment is a
FK lattice. For the model �1�, the dependence of J to N for
each segment is shown in Fig. 5. As the system size changes
from N=128 to 1024, the total heat fluxes J of HL or HR
approach a constant as expected. In Fig. 6, the dotted lines
show the functions �J±��N; for the model �1� the NEMD
simulation results and the analytical estimations of the total

FIG. 4. �Color online� Plot of J versus k3. Here T0=13.33 and
�=0.5.

FIG. 5. �Color online� Plot of J versus N for pure Morse on-site
potential models HL �D=30� and HR �D=20�.

FIG. 6. �Color online� Plot of J versus N; here T0=13.33, �
=0.5, and k3=0.05.
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heat flux J�N� are shown. They nearly overlap and �J±� is in
direct ratio to the system size N.

Here we need to clarify that the analytical estimation
holds true only as the coupling between two segments is
weak enough. Figure 7 shows the NEMD simulation results

for different k3 as the system size N increases. For k3=0.25,
the NEMD simulation results leave the analytical estimations
��J±��N� at the separate point N0�100. For k3=0.1, the
separate point N0 is larger than 1000. The separate point N0

increases as k3 decreases. This means that the NEMD simu-
lations will separate from the analytical estimations as the
coupling k3 is strong enough for a fixed system size N. When
we check the temperature profiles, the two segments are no
longer nearly in equilibrium states. The analytical analysis is
not reliable on these cases.

In summary, we consider a model consisting of two dif-
ferent Morse on-site potential lattices coupled by a weak
harmonic spring. Using the SCP theory and the general ther-
mal tunneling transport formalism, the heat flux through the
system can be estimated. The NEMD simulations are also
performed. As k3 is small enough for a fixed N, one can
predict the NEMD simulation results by the analytical esti-
mations quite well.
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